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Disorder-induced critical behavior in driven diffusive systems

Bosiljka Tadić*
Jožef Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia

~Received 27 February 1998!

Using a dynamic renormalization group, we study the transport in driven diffusive systems in the presence
of a quenched, random drift velocity with long-range correlations along the transport direction. In dimensions
d , 4 we find fixed points representing different universality classes of disorder-dominated self-organized
criticality and a continuous phase transition at a critical variance of disorder. Numerical values of the scaling
exponents characterizing the distributions of relaxation clusters are in good agreement with the exponents
measured in natural river networks.@S1063-651X~98!02707-X#

PACS number~s!: 64.60.Lx, 05.60.1w, 64.60.Ak, 92.40.Fb
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I. INTRODUCTION

Various interacting driven systems self-organize into cr
cal steady states, optimizing in that way their response
single functional unit@1#. An important feature of these sys
tems is their response in the presence of disorder. The ef
of disorder on critical properties in steady states have b
investigated@2,3# in cellular automata and coarse-grain
continuum models. It has been recognized that disor
changes local relaxation rules and breaks some symme
of the dynamics, which may result in a qualitatively differe
global dynamic state. A distinct class of physical phenom
in driven systems exhibits the scale-free behavioronly in the
presence of disorder. Examples include energy transpo
the integrate-and-fire oscillators with diversity@4# and
Barkhausen noise in spatially disordered ferromagnets@5#.
Fluctuations of the optimal path in heterogeneous mater
@6# and landscape evolution due to river networks flowing
naturally fractal environment@7–9# also belong to this clas
of dynamical systems.

Most studies of self-organized criticality~SOC! have been
done on sandpile automata, in which the nonlinearity resp
sible for SOC is due to threshold condition of toppling.
the continuum equation of motion for the dynamic variab
heighth(xW ,t), this leads to an infinite series of relevant o
eratorsmn]2hn @10#. Recent numerical simulations of sto
chastic automata with a ‘‘soft’’ threshold reveal differe
universality classes of SOC and a phase transition when
probability of toppling is varied@11#. Complementary to nu-
merical simulations, the renormalization group studies
continuum equations are aimed at characterizing the crit
behavior at large distances and long times. Hwa and Ka
@12# introduced a transport equation that is compatible w
all symmetries of anisotropic flow in open diffusive syste
with the leading nonlinearityl] ih

2 generated by nonlinea
friction.

In this work we study the transport equation of open d
fusive systems in the presence of quenched random drift
locity. We adopt an anisotropicd-dimensional model for the
height h(xW ,t) transport with Hwa-Kardar~HK! nonlinearity
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l] ih
2 and introduce quenched disorder via a termp(x)] ih,

which locally breaks the joint inversion symmetryh→2h,
xi→2xi . The symmetry is globally restored by assumi
the distribution of disorder with zero mean, which thus e
cludes the global current through the system. We also c
sider long-range correlations of disorder along the direct
of transport varying with distance as;gxi

221d and a weak
~anti!correlation in the perpendicular direction~see below!.
In our modelp(x) represents the spatially varying local v
locity of profile fluctuations, which is motivated by mas
transport in realistic granular and river flow with a preferr
direction of drainage. It should be stressed that our mo
differs from continuum models of SOC studied so far both
its symmetry properties and in correlations of defects. Me
while, in models of randomly driven interfaces@13# a similar
disorder term appears in a physically different context.

Using a dynamic renormalization group in the hydrod
namic ~HD! limit, we show that this type of disorder repre
sents a relevant perturbation in dimensionsd<4, leading to
a different disorder-induced scaling behavior. We calcul
the critical exponents at fixed points in thee[42d and d
expansions to leading order@14#. It is interesting to note tha
in the absence of disorder thee expansion to leading orde
yields the exact critical exponents in the HD limit, as d
cussed in detail in Ref.@12#. Using scaling arguments eli
gible for directed dynamic processes that generate self-a
structures, we also determine the avalanche exponent
terms of the anisotropy exponent.

The organization of the paper is as follows. In Sec. II w
introduce the stochastic differential equation with disord
and discuss our motivation for the long-range disorder c
relations. In Sec. III the details of the dynamic renormaliz
tion group analysis are given. In Sec. IV we discuss
critical behavior at disorder-induced fixed points for vario
physical values of the parameters and their relevance for
problems of river networks and strongly disordered dyna
cal systems. A short summary of the results is given in S
V.

II. STOCHASTIC EQUATION OF
DISORDER-DOMINATED NETWORKS

We start with the anisotropic diffusion equation for th
height transport@12# with nonlinear friction
168 © 1998 The American Physical Society
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]h

]t
5n i] i

2h1n']'
2 h2

l

2
] ih

22p~x!] ih1h ~1!

and a time-dependentnonconservingLangevin force

^h~x,t !h~x8,t8!&52Dd~d!~x2x8!d~ t2t8!. ~2!

The random term proportional top(x) locally breaks joint
inversion symmetry, which is obeyed by the remaining ter
@12#. We assume the distribution ofp(x) as

^p~x!&d50, ^p~x!p~x8!&d5g f ~x2x8!, ~3!

with f (x)5xi
2a x'

c . For consistency of the perturbation e
pansion~see below! we choosea522d andc;O(22z). In
Eq. ~1! anisotropy signals the existence of a preferred dir
tion of mass flow, which is the subject of two nonline
terms (l/2)(] ih

2) and g f (x)(] ih)2. The motivation for
long-range disorder correlations is as follows. We assu
that Eqs.~1!–~3! describe the evolution of heights~e.g., of a
granular pile or landscape!, which eventually leads to a self
organized structured landscape with a network of chann
along which the material is being eroded. It is important
keep in mind that these channels appear dynamically a
result of diffusion, which is influenced by an interplay of th
above two nonlinear terms. Therefore, an initial configu
tion that is based mainly on the configuration of disord
helps to imprint the channels by setting locally most pro
able drift paths. However, since the system is open and
peatedly perturbed by the nonconserving noiseh, the once
established network of channels is likely to evolve und
further perturbations, reaching a new stationary configu
tion, in which effects of disorder are altered. An example
dynamically modified disorder effects can be found in t
field-driven random Ising model, in which pinning by loc
random fields appears weakened by sweeping an avala
of flipped spins over certain pinning centers. The size of
avalanche is the subject of the dynamics itself. Another
teresting example is represented by erosion of natural la
scapes due to water flow. In the course of evolution,
originally preferred local drift directions become uneffecti
at sites that are found inside the correlated area that alre
drains to a different direction. Observations in natural riv
basins reveal@15,16# a persistent correlation between the a
erage soil slope at a sitex and areas(x) that drains to that
point as¹h(x);@s(x)#21/2. Here the drainage areas(x) is
not fixed but is determined self-consistently by the dynam
itself. A nice example of this relation at work is shown
Ref. @16#, where a procedure numerically iterated toself-
consistencyyields a self-similar river network. In the station
ary critical state we haves(x);xi

D if(x'/xi
z), whereD i is

the fractal dimension with respect to parallel length andz is
the anisotropy exponent~see below!. It is reasonable to as
sume that forxi→` the scaling functionf(r ) behaves as a
power of r , i.e., f(r );r h. Therefore, for theintermittent
dynamic regime@where eroded material from the areas(x) is
accumulated at pointx building up a shear stresss(x) and
erupting when the stress exceeds a critical valuesc], the
leading nonlinear term is proportional to;(¹h)2/xi

D i2hzx'
h .

In order to mimic the above processes in which the effe
of disorder are being dynamically modified, we only fix th
s
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disorder correlations in the direction of transport. The tra
verse correlations are then determined self-consistently
the fluctuations in the critical steady state@17#. Notice that
the difference 22z is a measure of the strength of critic
fluctuations~see Sec. III!.

III. DYNAMIC RENORMALIZATION GROUP ANALYSIS

The dynamic renormalization group consists of elimin
ing fast modes with subsequent rescaling:t→bzt, xi→bxi ,
x'→bzx' , andh→bxh, wherez, z, andx are the dynamic,
anisotropy, and roughness exponents, respectively. Naive
mensions of the coupling constants in Eq.~1! are then ob-
tained from the scaled equation

]h/]t5bz22n i] i
2h1bz22zn']'

2 h2bz1x21
l

2
] ih

2

1bz211mpp~x!] ih1bz2x1mhh,

where, according to Eqs.~2! and ~3!, we havemp52 1
2 (a

2cz) and mh52 1
2 @11z(d21)1z#. In (kW ,v) space the

equation of motion becomes

h~kW ,v!5G0~kW ,v!Fh~kW ,v!2 ik i
l

2E ddq

~2p!d

dv8

2p
h~qW ,v8!

3h~kW2qW ,v2v8!2 i E ddq

~2p!d

dv8

2p
~ki2qi!

3p~qW !h~kW2qW ,v2v8!G , ~4!

with the propagatorG0(kW ,v)5n iki
21n'k'

2 2 iv. Iterating
Eq. ~4! and eliminating fast modes leads to a diagrama
expansion~see Fig. 1!. In the HD limit k'→0, v→0, ki
!1, keeping the lowest respective orders ofki , we calculate
the one-loop contributions to the recursion relations@ l
[ ln b, Sd5212dp2d/2/G(d/2)]:

FIG. 1. One-loop diagrams with nonzero contributions to~a!
and ~b! the renormalized propagator,~c! dynamic noiseD, and
vertices~d! and ~e! l/2 and~f! g. The symbols are defined in th
bottom line.
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TABLE I. Scaling exponents at fixed points R and M to leading order in thee andd expansions. Also
listed are the mean-field exponents at fixed point G and the exact HK results at fixed point P.

Fixed
point z z 2x a t

G 2 1 1 2 3/2

P
6

72d

3

72d

d21

72d

102d

72d

132d

102d

M 22
3d12e

9
12

3d12e

18
12

2e

3
22

3d12e

18

3

2
2

9d16e

216

R 22
2d

3
12

d

3
12

d

4
2

e

2
22

d

3

3

2
2

d
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dl
5n iFz221

3p

32
Sdu12pSdwG , ~5!

dD

dl
5DFz22x2~d21!z211

p

2
SdwG , ~6!

dl

dl
5lF z

4
~72d!2

3

2
2

3p

4
SdwG , ~7!

dg

dl
5g@2z222a1cz1pSdw#. ~8!

Here the effective couplingsu and w are found to beu
[(l2D/n i

3)(n i /n')(d21)/2 andw[(g/n i
2)(n i /n')(d21)/2. A

few comments are in order.~a! As usual in systems with
quenched randomness, the perturbation expansion is ma
fixed random noisep(qW ) and subsequently the graphs a
averaged over the distribution ofp(qW ) leading to a dashed
line with a cross, which carriesgqi

2aq'
c . All graphs must be

connectedbefore this step is taken, thus leading at most
one cross-dashed line per loop. Due to the quenched na
of the random noise@cf. Eq. ~3!#, a loop with a cross-dashe
line involvesno frequency integration. However, averagin
over the dynamic noise according to Eq.~2! leads to a circle-
solid line with two propagators and a factor 2D and an inte-
gration over the internal frequency.~b! According to Eq.~4!,
the wiggly line associated with the vertexl/2 carriesik i ,
with kW being the momentum of the incoming line, where
the wiggly line associated with the vertexp(qW ) carries the
momentum i (ki2qi) of the outgoing line. Hence both
graphs in Figs. 1~a! and 1~b! for the renormalized propagato
are proportional toi (ki2qi) ik i and thus do not contribute t
the vertexn' . Therefore, we havedn' /dl 5n'@z22z#,
leading toz5z/2. This argument is valid to all orders in th
HD limit. ~c! The additional three graphs forl/2 andg ~not
shown!, which are obtained by replacing the cross-dash
line in Figs. 1~d! and 1~f! with a circle-solid line~there are
three such graphs forl/2 and three forg, corresponding to a
circle-solid line along one of the three sides of the triang!,
however, give a null contribution~same as in Ref.@12#!.
Similarly, a contribution of the graph for dynamic noiseD,
which is obtained by replacing the cross-dashed line in F
1~c! by a circle-solid line, vanishes.
at

o
re

s

d

.

On approaching a fixed point, we have from Eq.~6! x
5@z(32d)221pSdw#/4. From Eqs.~7! and ~8! we find

du

dl
5uFe2

9p

64
Sdu2

9p

2
SdwG , ~9!

dw

dl
5wFd2

3p

16
Sdu23pSdwG , ~10!

where the small expansion parameters aree[42d and d
[22a and we have chosenc5(22z)/2[12z. Notice that
this choice ofc is selected by the structure of the true e
pansion parametersu andw, so thate andd appear as their
anomalous dimensions, respectively. Also, the disorder c
relationsf (xi ,x') become isotropic whenz51, correspond-
ing to the isotropic transport. It should be stressed that
anisotropic disorder correlations no additional parameters
generated to leading order. Equations~9! and~10! have four
fixed points (u!,w!): G for Gaussian (0,0), P for pur
(64e/9pSd ,0), R for random (0,d/3pSd), and M for mixed
„32(3d22e)/9pSd ,(4e23d)/9pSd….

From Eq.~5! the dynamic exponent is obtained as

z522
3p

32
Sdu!22pSdw!. ~11!

Using Eq.~11! and the above scaling relations betweenz, z,
and x, we find the exponents in thee and d expansions,
which are shown in Table I. Also shown are the exponenta
andt for the probability distribution of durationP(t);t2a

and size of relaxation clustersP(s);s2t, which can be ex-
pressed in terms ofz using the following scaling argument
~see also Ref.@8#!. Forstrictly directionaldiffusion, the clus-
ters can be visualized as effectively planar structures with
fractal dimensionD i511z. The average size of cluster
scales aŝ s&;Ldl , whereL is the linear system size an
dl 51 for the self-affine clusters~for which z , 1). On the
other hand,^s&;LD i(22t) and the scaling relationD i(t
21)5a21 holds in the steady state. Using these relatio
we find t5(112z)/(11z) anda511z.
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IV. UNIVERSALITY CLASSES OF DISORDER-INDUCED
CRITICALITY

As seen from Table I, the fixed point G represents me
field SOC, which becomes unstable for dimensionsd , 4
with respect to both nonlinearity and disorder. The relat
stability of the other three fixed points in the (u,w) plane
depends on the parameterse andd and on the initial value of
the ratiow/u. In Fig. 2 we show the flow diagrams of Eq
~9! and~10! for d51 ande51 and 2.~For convenience we
use reduced couplingsU[pSdu/32 andW[pSdw.) In the
casee51, the competition between disorder and thel term
leads to two different types of behavior, which are separa
by the lineW/U51. The fixed point M, whose domain o
attraction is the lineW/U51, is unstable in the direction
perpendicular to the critical lineW/U51, representing a
phase transition from pure HK to disorder-controlled SO
with increasing variance of disorder. We find qualitative
the same behavior for short-range correlations (d52) in d
52. In the case of long-range correlated defects (d51) in
two dimensions~cf. Fig. 2! the fixed point M moves to the
negative-U region and becomes spirally attractive. The ent
first quadrant flows towards the pure HK fixed point P. T
flow lines are first attracted to a section of the curve conn
ing the fixed points R and P approaching the fixed poin
under a nonzero angle.

Taking the analytic continuation tod→1 ande→ 1 or 2,
corresponding to physicald5 211 or 111 dimensions@18#,
respectively, we obtain numerical values of the expone

FIG. 2. Flow diagrams ford51 and ~top! e51 and ~bottom!
e52. Large circles represent fixed points described in the text.
-

e

d

e

t-
P

s,

which are listed in Table II. Hered51 was taken as atypical
example of long-range correlations. Notice that in contras
e, which is restricted to integer values, the parameterd may
vary continuously in the range 0,d,2. It is noteworthy that
the exponents at all three fixed points ind5211 are close to
values measured in natural river networks~RNs!. For river
basins around the world the exponents are found@7# to be
t51.4121.45, a51.6721.92, z50.6720.92, and Hack’s
exponent h50.5420.6 satisfying the scaling relationh
51/a. The roughness exponent for large length scales@19#
was found in the rangex50.320.55. Variations in the val-
ues of the exponents depend on geographical location w
they have been measured and can be related to locally d
nated erosion mechanisms@20#. With regard to the results in
Table II, we would like to point out the following.~i! In the
absence of disorderg50, corresponding to the limit studie
by Hwa and Kardar in Ref.@12#, the exponents are within th
range of the above RN exponents, indicating that the
model of flowing granular piles captures the basic feature
landscape evolution. It should be stressed that in this c
(g50) the values of the exponents are exact and are n
subject of higher-order corrections in the perturbation exp
sion ~see Ref.@12# for details!. ~ii ! For finite disordergÞ0
two more fixed points are accessible, depending on the in
values ofg andl. Therefore, variations of numerical value
of the exponents can be attributed to different universa
classes, which are accessible for varying initial strengths
disorder. In particular,a decreases from 1.75 at the HK lim
to 1.72 at fixed point M and eventually to 1.66 at fixed po
R by increasing disorderg at fixed l ~see Fig. 2, top!. In
addition, the exponents at fixed points M and R vary with t
range of disorder correlationsd ~values ofd in the interval
0,d,2 correspond to long-range correlations!. For in-
stance, ford51/3, e51 we have at fixed point Mz50.83,
a51.83, andt51.45. It is interesting to note that the sam
values for cluster exponents are obtained by the numer
procedure in Ref.@16#. According to the discussion in Sec
II, we have that forz50.83 the exponent in the leadin
nonlinear term becomesD i2z(12z)51.69, which is close
to 22d51.67. On the other hand, for shorter disorder c
relations, e.g., ford53/2, we finda51.64 andt51.39. The
importance of disorder for river networks has been a
pointed out by Caldarelliet al. in Ref. @21#, where numerical
simulations of a cellular automaton model of random
pinned landscape evolution yields the exponents very c
to those at fixed point M~see Table II!. Moreover, in the

TABLE II. Numerical values of the critical exponents at variou
fixed points ford51 ande51 ~first three rows! and d51 ande
52 ~last three rows!.

Fixed
point z z x a t e

P 1.5 0.75 20.5 1.75 1.428 1
M 1.44 0.72 20.33 1.72 1.418 1
R 1.33 0.66 20.25 1.66 1.40 1
P 1.2 0.6 20.2 1.6 1.375 2
M 1.22 0.62 0.33 1.62 1.371 2
R 1.33 0.66 0.25 1.66 1.40 2
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172 PRE 58BOSILJKA TADIĆ
absence of pinning, the same authors@21# found the expo-
nents close to HK fixed point P given in Table II.

At fixed point R, representing the universality class in t
strong disorder limit (l50), the exponents are in very goo
agreement~cf. Table II! with the results of numerical simu
lations of Ref.@9#, suggesting small higher-order correctio
(dl 50.9860.02, z50.6660.02, and t51.4060.02) for
self-affine networks with disorder-dominated basins in t
dimensions. It has been argued in the literature@6,9# that the
problem of optimal path in strongly disordered medium a
Eden growth processes also belong to this universality cl
In these systems the disorder effects are dynamically m
fied. Eden growth is not defined as a disordered probl
however, an effective quenched disorder with long-ran
correlations is self-generated by the blocking effects of p
viously occupied sites@see Ref.@6~b!##. Similarly, in the
above-mentioned example of disorder-dominated basin
two dimensions sites that are already connected at timt
influence the course of the process at later time steps
numerical simulations of cellular automata models, such
done in Refs.@9,21,11#, for instance, a particular range o
disorder correlations isnot specified. The exponents are mea
sured in the emergent stationary critical state, which is
tained after many successive updates. To our knowledg
stochastic differential equation for dynamically varying d
order effects in these systems has not been considered s
Here we argue that Eq.~1! with disorder correlations of the
type f (x);xi

21x'
12z might capture the critical properties o

these dynamical systems.
Following the general scaling arguments of Ref.@12#, we

estimate the behavior of the order parameter, defined in a
ogy to cellular automata by the average outflow current

^J~W!&5E dt

T E dd21x' j ~L i ,x' ,t,W!. ~12!

In the steady statêJ(W)&[1, and exhibiting fluctuations
near the transition, hence we have^J(W)&;Wb. For small
disorder the local current isj ;h2; thus we have
j (L i ,x' ,t,W) ; b2x j (b21L i ,b2zx',b2zt,b2mwW) or
j (L i ,x' ,t,W) ; x'

2x/zf(tx'
2z/z ,Wx'

2d/z). Inserting the last
expression into Eq.~12! and after extracting formally theW
dependence, we findb5@2x1z(d21)#/d. The directed dif-
fusion in our model represents some kind of a contact p
cess; therefore, fort→` and xi→` the following scaling
S.

.

tt
d
s.
i-
;

e
-

in

In
s

-
, a

far.

al-

-

relation holds:b/ n̄5a8. Here n̄ is the parallel correlation
length exponent anda8[a21 is the exponent of the sur
vival probability distribution. At fixed point M ford51 and
e51 we find b50.78 and n̄51.08. A similar valueb
50.86 was found in the stochastic cellular automaton@see
Ref. @11~a!##.

V. CONCLUSIONS

We have demonstrated that our transport equation w
quenched disorder in the drift velocity withanisotropiclong-
range correlations describes two different universality clas
of critical behavior in open diffusive systems. For finite di
order we find SOC relevant for the scaling properties of fr
tal river networks. For low disorder a crossover to t
asymptotic behavior controlled by the HK fixed point occu
@12#. At critical variance of disorder a continuous phase tra
sition occurs between the two different types of steady sta
channel-type flow for strong disorder and low friction an
surfacelike flow for low disorder and high friction. The com
parison of the numerical values of the avalanche expon
at fixed points in 211 dimensions with the exponents me
sured in natural river networks@7# is quite satisfactory. Our
analysis suggests that natural river networks may result f
the interplay between quenched disorder and an effec
nonlinear friction. Variations in the range of disorder corr
lations 0,d,2 appear as a possible underlying mechani
that explains the observed variations in the exponents
natural networks. Adistinct universality class of disorder
induced self-organized criticality is represented by the fix
point R of our model, wherel50. Evidence collected by
numerical simulations in Refs.@6,9# suggests that a numbe
of other disordered dynamical systems should have the s
critical behavior described by the fixed point R. In th
present work we pointed out the importance of long-ran
correlations in this class of self-organizing disordered s
tems.
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